segunda-feira, 22 de novembro de 2010

POLÍGONOS REGULARES



Para um polígono convexo qualquer de n lados:

Soma dos ângulos Internos

SÎ = (n-2) . 180º

Soma dos ângulos Externos

Sê = 360º

Número de Diagonais

d= n(n-3) / 2

Polígonos regulares

São aqueles que possuem todos os lados congruentes e todos os ângulos congruentes.

Î = (n-2).180º /n ê=360º/n

Î + ê =180º

Relação entre duas secantes concorrentes



Ai está um exemplo. Lembrando que quando for calcular iremos substituir essas letras pelo o valor que estiver na imagem.
Vamos ao exemplo:



Cálculo:
24. x = 20. 12
24x=240
x=10

Ou seja, vamos pegar o valor da volta completa da circunferência (no exemplo acima o 24 e o 20) e multiplicar pelo o segundo valor, no caso a metade da reta (no exemplo acima o 12 e o x)

quarta-feira, 17 de novembro de 2010

Circunferência e seus elementos

A circunferência pode ser considerada uma linha curva fechada, onde a distância entre a extremidade e qualquer ponto da mesma possui medida igual.



Corda

Dada uma circunferência de centro O a pontos A, B, C e D pertencentes a ela, temos os seguintes elementos: AB e CD.
Os segmentos AB e CD têm suas extremidades nessa circunferência. Dizemos que os segmentos determinados por dois pontos quaisquer da circunferência são cordas da circunferência.



Raio

Distância compreendida entre o centro e a extremidade da circunferência.



Diâmetro

Com base na figura anterior note que o segmento CD (corda) passa pelo centro da circunferência e se transforma no diâmetro da circunferência, também chamado de corda máxima.

Diâmetro da circunferência

É fácil perceber que a medida do diâmetro é o dobro da medida do raio. Se chamarmos D a medida do diâmetro e r a medida do raio, temos a seguinte relação:
D = 2 * r

Arco

Considere agora esta circunferência:



Angulo Central

Independente da sua forma o ângulo central tem sempre a mesma medida do arco AB correspondente.
O ângulo cental é aquele la pertinho do centro, já o arco AB é aquele "contorno" vermelho sobre a circunferência. Confira abaixo:



Ângulo inscrito

Em Geometria, um ângulo inscrito é formado quando duas retas secantes de um círculo (ou, em casos extremos, quando uma reta secante e uma reta tangente do círculo) intersectam o círculo por um ponto comum.
Tipicamente, é mais fácil pensar um ângulo inscrito como definido por duas cordas do círculo dividindo um ponto.



Relação entre duas cordas na circunferencia .

A circunferência possui algumas importantes relações métricas envolvendo segmentos internos, secantes e tangentes. Através dessas relações obtemos as medidas procuradas.

Cruzamento entre duas cordas

O cruzamento de duas cordas na circunferência gera segmentos proporcionais, e a multiplicação entre as medidas das duas partes de uma corda é igual à multiplicação das medidas das duas partes da outra corda. Observe:



AP * PC = BP * PD

Exemplo 1



x * 6 = 24 * 8
6x = 192
x = 192/6
x = 32

Teorema de Pitagoras

O Teorema de Pitágoras é considerado uma das principais descobertas da Matemática, ele descreve uma relação existente no triângulo retângulo. Vale lembrar que o triângulo retângulo pode ser identificado pela existência de um ângulo reto, isto é, medindo 90º. O triângulo retângulo é formado por dois catetos e a hipotenusa, que constitui o maior segmento do triângulo e é localizada oposta ao ângulo reto. Observe:

Catetos: a e b
Hipotenusa: c



O Teorema diz que: “a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.”

a² + b² = c²

Exemplo 1
Calcule o valor do segmento desconhecido no triângulo retângulo a seguir.



x² = 9² + 12²
x² = 81 + 144
x² = 225
√x² = √225
x = 15


Foi através do Teorema de Pitágoras que os conceitos e as definições de números irracionais começaram a ser introduzidos na Matemática. O primeiro irracional a surgir foi √2, que apareceu ao ser calculada a hipotenusa de um triângulo retângulo com catetos medindo 1. Veja:



x² = 1² + 1²
x² = 1 + 1
x² = 2
√x² = √2
x = √2

√2 = 1,414213562373....

Exemplo 2
Calcule o valor do cateto no triângulo retângulo abaixo:



x² + 20² = 25²
x² + 400 = 625
x² = 625 – 400
x² = 225
√x² = √225
x = 15



Exemplo 3
Um ciclista acrobático vai atravessar de um prédio a outro com uma bicicleta especial, percorrendo a distância sobre um cabo de aço, como demonstra o esquema a seguir:



Qual é a medida mínima do comprimento do cabo de aço?


Pelo Teorema de Pitágoras temos:

x² = 10² + 40²
x² = 100 + 1600
x² = 1700
x = 41,23 (aproximadamente)

Função de 2ª Grau ou Função Quadratica

A função do 2º grau, também denominada função quadrática, é definida pela expressão do tipo:


y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e a = 0

Exemplos:
a) y=x²+3x+2 ( a=1; b=3; c=2 )
b) y=x² ( a=1; b=0; c=0 )
c) y=x²-4 ( a=1; b=0; c=-4 )

Gráfico de uma função do 2º grau:

O gráfico de uma função quadrática
é uma parábola













Exemplo:

Construa o gráfico da função y=x²:

Como na função do 1º grau, basta atribuir valores reais para x, obtemos seus valores correspondentes para y.










Notem

que os pontos: A e A`, B e B`, C e C` são simétricos (estão a mesma distância do eixo de simetria). O ponto V representa o vértice da parábola, é a partir dele que determinamos todos os outros pontos.

Coordenadas do vértice

A coordenada x do vértice da parábola pode ser determinada por .

Exemplo: Determine as coordenad

a do vértice da parábola y=x²-4x+3

Temos: a=1, b=-4 e c=3

Logo, a coordenada x será i

gual a 2, mas e a coordenada y?

Simples: Vamos substituir o valor obtido da coordenada x e determinar o valor da coordenada y.

Assim, para determinarmos a coordenada y da parábola
y=x²-4x+3, devemos substituir o valor de x por 2.

y = (2)²-4.(2)+3 = 4-8+3=-1

Logo, as coordenadas do vértice serão V=(2,-1)

Portanto, par

a determinarmos as coordenadas do vértice de uma parábola, achamos o valor da coordenada x (através de x=-b/2a) e substituindo este valor na função, achamos a coordenada y!!!

Raízes (ou zeros) da função do 2º grau

Denominam-s

e raízes da função do 2º grau os valores de x para os quais ela se anula.

y=f(x)=0

Exemplo: na função y=x²-4x+3, que acima acabamos de determinar as coordenadas de seus vértices, as raízes da função serão x=1 e x`=3.

Vejamos o gráfico:










Notem que quando x=1 e x`=3, a parábola intercepta ("corta") o eixo x.

Como determinar a raiz ou zero da função

do 2º grau?

Simplesmente aplicando a resolução de equações do 2º grau, já vista na seção anterior.

Exemplo: determine a raiz da função y=x²+5x+6:

Fazendo y=f(x)=0, temos x²+5x+6=0

Agora basta resolver a equação aplicando a fórmula de Bháskara.

x²+5x+6=0

Acharemos que x = -2 e x` = -3.

Concavidade da parábola

Explicarei esta parte com um simples desenho.



Os desenhos até que ficaram bonitinhos, mas isso não importa neste momento. O que nos importa agora é que quando a>0, a concavidade da parábola está voltada para cima (carinha feliz) e quando a<0, a parábola está voltada para baixo (carinha triste).

Exemplos:







Quando a concavidade está voltada para cima (a>0), o vértice representa o valor mínimo da função. Quando a concavidade está voltada para baixo (a<0), o vértice representa o valor máximo.

Quando o discriminante é igual a zero

Quando o valor de , o vértice a parábola encontra-se no eixo x. A coordenada y será igual a zero.

Exemplo: y=f(x)=x²+2x+1

x²+2x+1=0

x=x`=-b/2a=-1

As coordenadas do vértice serão V=(-1,0)

Gráfico:



Quando o discrimintante é maior que zero

Quando o valor de , a parábola intercepta o eixo x em dois pontos. (São as raízes ou zeros da função vistos anteriormente).

Exemplo: y = f(x) = x²-4x+3

x²-4x+3=0

x=1, x`=3

Gráfico:



Quando o discriminante é menor que zero

Quando o valor de , a parábola não intercepta o eixo x. Não há raízes ou zeros da função.

Exemplo: y = f(x) = x²-x+2

x²-x+2=0


Gráfico:



Esboçando o gráfico

Para finalizarmos (ufa!), vamos desenhar o gráfico da função
y=-x²-4x-3

1ª etapa: Raízes ou zeros da função

-x²-4x-3=0
Aplicando a fórmula de Bháskara
x=-1, x`=-3

2ª etapa: Coordenadas do vértice

Coordenada x (=-b/2a): -(-4)/2.(-1)=-2

Coordenada y: Basta substituir o valor de x obtido na função
y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1

Portanto, V=(-2,1)

3ª etapa: Concavidade da parábola

y=-x²-4x-3

Como a=-1<0, a concavidade estará voltada para baixo

Feito isso, vamos esboçar o gráfico:



Função do 2º grau

quinta-feira, 5 de agosto de 2010

Teorema de Tales

O Teorema de Tales é determinado pela intersecção entre retas paralelas e transversais, que formam segmentos proporcionais. Foi estabelecido por Tales de Mileto que defendia a tese de que os raios solares que chegavam à Terra estavam na posição inclinados. Partindo desse principio básico observado na natureza, intitulou uma situação de proporcionalidade que relaciona as retas paralelas e as transversais.

Retas paralelas cortadas por retas transversais formam segmentos proporcionais. Observe:


No esquema acima, as retas a, b e c são paralelas e as retas r e r’ são transversais, de acordo com o Teorema de Tales temos as seguintes proporcionalidades:






Observe que a relação estabelecida envolve noções de razão e proporção, o segmento AB está para o segmento BC assim como o segmento A’B’ está para o segmento B’C’. A igualdade entre as duas razões formam uma proporção, o cálculo dessa proporção será resolvido através de uma simples multiplicação cruzada, ou de acordo com a propriedade das proporções: o produto dos meios é igual ao produto dos extremos.

Observe o seguinte exemplo, nele aplicaremos o Teorema de Tales para encontrar o valor do segmento desconhecido:





O Teorema de Tales possui inúmeras aplicações nas diversas situações envolvendo cálculo de distâncias inacessíveis, possui grande aplicabilidade nas questões relacionadas à Astronomia.

Teorema de Tales